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Contact Angle Hysteresis in a Solid-on-Solid Model 

P. Collet, t J. D e  Coninek, 2 and F. Dunlop t 

Received June 22, 1993 

The hysteresis of the contact angle of a sessile drop on top of a disordered 
substrate is studied within a two-dimensional solid-on-solid model using Monte 
Carlo dynamics. Numerical and analytical evidence is given to show that there 
is always a hysteresis even for small densities of impurities. 
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1. INTRODUCTION 

The phenomenon of contact angle hysteresis has been considerably studied 
from an experimental point of view. (~ 3) It is now generally accepted that 
this property is due to chemical heterogeneities on top of the substrate or 
due to the roughness of the substrate. 14 6~ From a microscopic point of 
view, just a few results have been obtained so far, neglecting the associated 
thermal fluctuations, t7'8~ There are, however, some aspects of the problem 
which remain unclear, such as the' fact that even for a small density of 
impurities on top of the substrate, there would always be a hysteresis in the 
absence of external field (e.g., the gravitational field). This seems in 
contradiction with the natural idea that the thermal fluctuations of the 
interface should wash out small heterogeneities at the molecular scale. 

In a previous paper on a two-dimensional microscopic model ~9~ we 
studied this hysteresis neglecting all thermal fluctuations other than those 
of the contact  point between the interface and the substrate, and concluded 
that hysteresis is present at arbitrarily small disorder. This left open the 
question as to .whether  fluctuations of the interface itself would pull the 
contact point out of traps made by the disorder, and thus remove 
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hysteresis when the disorder was weak and the temperature high enough. 
This motivates the present work, where we keep all the dynamical degrees 
of freedom of the interface, still in two dimensions. 

We use a solid-on-solid approximation of the interface and study the 
corresponding Monte Carlo dynamics. Section 2 presents the model and 
Section 3 gives the main results of our numerical simulations. Analytical 
estimates which confirm our numerical results are presented in Section 4. 
Some discussion is given in a concluding section. 

2. THE RSOS MODEL AND M O N T E  CARLO D Y N A M I C S  

The advancing edge of our two-dimensional drop is represented by 
vertical columns describing the height h~ of the profile above a flat sub- 
strate, as indicated in Fig. 1. The index i runs from 0 up to a variable point 
1, where the interface meets the substrate, so that h ; > 0  for i=0,..., l , - 1  
and hi, = 0. The length l, will be called the spreading length. Since we want 
to study the contact angle, we consider configurations with a fixed value 
for ho, which should be taken to infinity in the thermodynamic limit. The 
height difference h~+l-h~ is allowed to take values - 1 ,  0, or 1, which 
corresponds to the so-called RSOS model (restricted-solid-on-solid model). 
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RSOS configurat ion for an  advancing  interface. 
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The energetic cost of a configuration with an interface of projected 
length 1 (the spreading length) is defined according to 

/ - - 1  / - - I  

Er h, ..... h,_,)=J ~. ( l+lh,+,-hi l ) - IM+ ~ 4, (1) 
i = 0  i = 0  

where p is the difference between the wall free energies with and without 
the spreading phase, and the quenched random variables r represent the 
disorder, i.e., the local variation of the wettability due to impurities or 
defects compared to that of an ideal substrate. For the numerical simula- 
tions presented in the next section, the random variables ~i were taken 
independent and uniformly distributed on an interval [-b,b].  More 
generally the ~i will be assumed to be distributed according to a transla- 
tion-invariant Gibbs state with short-range correlations, zero average, and 
variance proportional to b 2. The parameters J, /a, and b are taken as 
dimensionless multiples of kT, so that the temperature will not appear 
explicitly in the following: 

The partition function 

Zr ~ ~ exp[-Er hl ..... hl_l)]  
I = h 0 h I ,.... h I - I 

is finite almost surely with respect to ~ if and only if 

/ J < J - l o g ( 1  +2e -J) (2) 

which defines the partial wetting regime where contact angles will be 
strictly positive and spreading lengths proportional to ho (see ref. 10 for 
results in the case of a pure substrate). The equilibrium probability of a 
configuration is the finite-volume Gibbs measure 

1 
Pre(hl ..... hi_ ,, 1)= W--- expl--  Er h, ..... hi_ ,)-I 

z.~.ho 

It will be convenient to use the following equivalent representation: 
given a positive integer h o, the configuration space is defined as the set of 
h =  {hi}i= ~ i such that: 

1. Vi>~0, h i+ l -h i~{ -1 ,  O, 1}. 
2. Vi~>0, hi=O:=:'hi+l =0. 

3. max{i lhi>0} < oo. 
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The energy as defined in (1) above can then be written as 

~c 

Er ~ (Jlh,+,-h,I +(J- - / /+~i ) ( l - -~h , ,O))  
i = O  

(3) 

and the partition function 

Zr = Y'. exp[ --Er ] 
h 

where the sum is over the configuration space just defined with a given 
value of ho. 

Let us now define the dynamics, wfiich is a discrete-time dynamics 
whereby at each time step we let evolve either the h~ with i odd or the h~ 
with i even. Letting h = (h ~ h"), with 

h"= {h2j+, }j\o, h"= {h~j}j%, 

we take the transition probabilities as follows: 

Prr ~ h")--+ (h'", h"))- 

Prr ~ h") --, (h ~ h'")) - 

1 e x p [ -  Er '~ h")] 

2 Zh",, exp[ -Er "~ h")] 

1 e x p [ - E r  ~ h'")] 

2 Zb',,' exp[ -E~(h ~ h"")] 

(4) 

where h ' ~  h ~ and h'":# h", and where the factors 1/2 correspond to the 
probability of either the odd sites or the even sites being updated. The 
dynamics thus defined satisfies the detailed balance condition and is 
irreducible, which implies that the time averages will converge to the 
equilibrium Gibbs measure, starting from any initial configuration. 

A simple argument, following the lines of proving a Wulff construc- 
tion, shows that the equilibrium contact angle 0e, which in practice may 
not be reached within observation times, does obey Young's equation for 
the averaged substrate, 

cos 0,, a(0,,) - sin 0,, a'(0,,) = ta (5) 

where a(O) is the surface (in fact line) tension, and tr'(O) its derivative with 
respect to 0. For one-dimensional SOS models, a(O) can be computed 
explicitlyCt~ and the result in the present case reads 

a(O)=JcosO+cosinO-cosOlog(l +e-J+""+e -g-'") (6) 
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where co is the solution of 

e-J+co e-J-co 
tan O= 1 +e-~+" '+e  - J - ' '  (7) 

Young's equation has a solution 0,,>0 when (2) is satisfied, and the 
equilibrium contact angle thus defined satisfies 

tan-" 0,.= (1 - -e  J+~')2--4e-4J+2~' (8) 

One may be interested in the variation of the equilibrium length (1)~ 
from sample to sample. This can be obtained from the free energy 
conditioned by given values of 1, near the value 1,, corresponding to the 
averaged substrate: 

sin 30 (l,,_l)Z # 
F t - F #  2(tr+tr") h - ~  q- ~ ~i+('O(l~ 

i = l  

The term coming from the disorder is almost surely of order b [1,.- 11 ~/2, 
which dominates as long as 

II-  1,,I ~ ho/3 ~ l~/3 

The most likely value of 1 will therefore differ from 1,. almost surely by 
order/7/3 . 

3. N U M E R I C A L  RESULTS 

We consider initial configurations which are straight interfaces with 
various contact angles such as shown in Fig. 1. For the ideal substrate 
(~i= 0 for all i), the interface relaxes in a time of the order of h o Monte 
Carlo steps per site to the equilibrium profile, starting from any initial 
angle. However, if the amplitude b of the disorder is large enough, we 
observe that the graph of the spreading length l, as a function of time t 
presents various plateaux as reproduced in Fig. 2. 

When a plateau has a lifetime of order larger than hg, which corre- 
sponds to the experimental time scale, the interface is trapped. The first 
such trap met by the interface will be the observed angle, which defines an 
advancing angle or a receding angle depending on the initial conditions. 

In order to investigate the uniqueness of the advancing angle in the 
thermodynamic limit, we have simulated the time evolution of the advancing 
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Fig. 2. Spreading length versus time for advancing interfaces with b = 3 ,  2, 1, 0 and for 
receding interfaces with b = 0 ,  1, 2, 3, from bottom to top. The maximum time is (1.25) l07 
MC steps/site, the initial length is 500 for the advancing interfaces and 1500 for the receding 
ones. J = 2, and p is chosen such that/,,  = 1000. The random variables r take the same values 
for the eight runs. 

edge for several substrates, independently chosen with the same distribu- 
tion of 3. In Fig. 3 we reproduce for various values of ho the histogram 
of the variable l obtained by counting how many times l, falls in given 
intervals, at times greater than twice the pure relaxation time (t,,~n= 
2trelax = 10h~) and less than ten times this time (/max ---- 10trelax = 50ho2), 

, (( ,o)/ 
I ( I )=  ~ )~ I -  l , < l + ~  

/max - - / ra in  t= train+ 1 40 "~ r 

where the brackets indicate an average over a certain number of runs with 
different realizations of the substrate, and X is an indicator function. 

The initial condition was always lo=ho . The results support the 
conjecture that, in the thermodynamic limit (h0--, oo), the associated 
distribution of the advancing contact angle reduces to a delta distribution. 
In other words, on the time scale of the time for relaxation to equilibrium 
in the pure case, the advancing angle is self-averaging. Its precise value 
depends on the various parameters in the problem, on the probability dis- 
tribution of the disorder, and in particular on b. A heuristic discussion of 
this dependence is given in the next section. 
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Fig. 3. Histogram of the spreading length for ho = 200, 400, 800 with disorder b = 3, and for 
h o = 200 with a puresubstrate .  J = 2, ,u ~- 1.26, giving/~q = 1.97h o. The initial length is Io ~ ho- 
The histogram is built from times between 10h o and 50h o measured in MC steps per site, and 
is averaged over a number of  substrates equal to 1000, 320, 48. respectively, when b = 3, or 
over 10 runs in the case of  the pure substrate. 

4. ANALYTICAL RESULTS 

In this section, we assume that the random variables ~j are distributed 
according to a translation-invariant Gibbs state with short-range correla- 
tions (denoted by ( - ) )  and with zero average. 

We recall the large-deviation result for one-dimensional Gibbs states 
with short-range correlations. Let 

n-- I 

s,,=Z % 
j = o  

It is well known c~zl that the following limit exists: 

P ( x ) =  lim l log(e~S") (9) 
t i t a n  

This function is real analytic and we have for ~ > 0 

Pr(S,, > ncc) ,~ e-':r'=' 
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where f is the Legendre transform of P, namely 

x = f ' ( a )  

P(x)  = xa --f(oO 
(10) 

We recall also that P is strictly convex with P(O)= P ' (O)=  O, f is concave 
withf(O) = f ' ( O ) =  O, and in the above result the symbol ~ means precisely 
(for c~>O) 

f ( ~ ) =  - lim l l o g  P r ( S . > n ~ )  
n ~ o c n  

We now consider a given spreading length I~ corresponding to an 
angle 0 > 0,.. We compute the variation of free energy when the position is 
n steps further right, where the contact angle has decreased to 0 + 60 with 

n sin 2 0 
60= 

ho 

If n .~ ho. to the leading order in n, the variation F~, + . -  Fz~ of the free 
energy conditioned by the given values of l reads 

ho ~ II + n 
Ft. + .  - FI, ~- sin(O + 6 0 )  a(O + 6 0 )  - a (O)  - #n  + 

j = / l + l  

- ( g  - a cos 0 + a' sin O)n + S,,(l~) 

r 

The event S . ( l , ) >  na will occur almost surely in the thermodynamic limit 
somewhere on an interval [1, l+  el] if we have 

Pr(S.  > nu) > (el)- i 

This implies that, for any ct > O, the largest n realized almost surely is given 
by 

log l 
n~,~, 

f(oO 

We then get for the corresponding energy barrier to the right 

ct - (/~ - a cos 0 + a '  sin O) 
log l 

f ( a )  
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The time needed to pass such a barrier is of the order of the exponential 
of this number  and is therefore a power of / ,  namely l ~ with 

ct - (~ - ~r cos 0 + ~r' sin 0) 

)' = f ( c ~ )  

We now maximize the number }, with respect to ~. We get 

d7 f ( ~ ) -  [ ~ - ( / ~ - c r c o s O + a ' s i n O ) ] f ' ( ~ ) = O  

da - f ( a  )~ 

which is easier to formulate using the function P and the variable x = f ' ( ~ ) ,  
namely 

1 p(x) 
y(O) = -  with la -acosO+a's inO= (11) 

X X 

If we now assume 

P(x) 
/~- lira - - < c r c o s O - a ' s i n O < / l  (12) 

A ' ~  + o c  X 

then the strict convexity of P with P ' ( 0 ) = 0  implies the existence of a 
unique x = x(O) > 0 satisfying Eq. ( 1 1 ). Using 

a c o s  O-a '  sin O = J - l ,  og(l  + e  s+' '+e-J-" ' )  

with co given by (7), we see that this expression is a monotone  decreasing 
function of 0, The second inequality in (12) is just 0>0,,. The first 
inequality means that 0 is less than the equilibrium angle corresponding to 
a substrate where ~ would be a constant  equal to its maximum allowed 
value. One can see also that x(O) is monotone  increasing in 0 and x(O) ",, 0 
as 0 ",, 0,,, so that 7(0) ," oo as 0 "~ 0,.. 

When the exponent 7(0) is less than two, it will be hidden by the 
exponent, equal to two, for relaxation of the interface itself with both 
ends pinned. Therefore we propose a definition of the advancing angle, 
physically the angle where the interface is stuck, in the present context, as 
the angle at which y(O)= 2, i.e,, O~ such that 

cr cos O, - a '  sin O, =/~ - 2P(1/2) (13) 

o r  

tan 2 0,, = (1 - e - S  +~'-2ect/2~) 2 - -4e  -4s+ 2~- 2e11'21 (14) 
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Let us now consider specific cases. First, independent impurities 
distributed as in ref. 9: 

We find 

and 

~i=b-db 

with probability 1 - d 

with probability d 

P(x)  = - d b x  + logEI + d(e b ' -  I )] 

a cos 0 . -  ~r' sin O . = # + d b - 2  log[ l  + d(e ~/2-  1 )] (15) 

Another case is the distribution of disorder chosen in the numerical 
simulations presented in Section 3, namely ~ independent uniformly 
distributed in I - b ,  b],  for which we find 

sinh(xb) 
P(x)  = log xb 

(16) 

E 2 e cos O. - a '  sin O. = # - 2 log ~ sinh - # .(b)  

o r  

tan 2 0~ = ( 1 - e - s+  mira)2 _ 4e -4J+ 21,,,(h) (17) 

Applying this formula to the set of parameters corresponding to Fig. 3 
gives 

2001,,/lo ~- 263 (18) 

Compar ing with Fig. 3, we observe that the peak of the histogram becomes 
narrower and shifted to the left as ho = 200, 400, 800 increases. It is clear 
also that finite-size corrections and broadening are much more pronounced 
in the disordered case than in the ordered case. 

5. DISCUSSION 

We have obtained simple analytical formulas for the contact  angle 
hysteresis in two dimensions, in the framework of solid-on-solid models 
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with disorder of arbitrary amplitude. These formulas also apply to isotropic 
interfaces, i.e., for fluids. The amplitude of the hysteresis, as measured by 
comparing the advancing angle to the ultimate equilibrium angle, is then 
given by 

 oso o (19) 

where, for uncorrelated disorder, 

p(�89 = l o g ( e  r ) 

The corresponding graphs are given in Fig. 4 and reveal that impurities 
distributed uniformly in an interval [ - b ,  b],  covering all sites of the 
substrate, induce a larger hysteresis effect than simple impurities of fixed 
magnitude b scattered with a density d on the substrate, whatever the 
density d. 

The advancing contact  angle is associated with a time scale of order 
l 2 . Our  study also provides an estimate of the time needed to reach the true 
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Fig. 4. The amplitude of the contact angle hysteresis cos 0,.- cos 0,, as a function of the 
amplitude of the disorder b for a given interfacial tension tr = 1, showing the case of disorder 
distribution uniform in [ -b ,  b] and the case of impurities of fixed amplitude b scattered at 
random with density d= 0.25 and d=0.01. 
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equilibrium in presence of disorder. Let us first remark that the time scale 
T(O)~-F  '~~ which is l 2 for 0=0u ,  diverges as 0 ",, 0r: 

7(0) ~ (cosO,,- cos 0 ) - '  as 0 x, 0,, 

When 1,, - l is of order smaller than l,., the analysis takes a slightly different 
form: we consider intervals of length 1,,- 1 centered at 1 and look for large 
deviations of the disorder, S, > net, in the given intervals. The width n of 
the trap is now restricted to n < 1,,- L Our estimate for 7(0) corresponds to 
a choice n ~ log(l,,-l)/f(~t), and a choice of at such that 

f ( c t ) ~ 2 ~ ' ( O - O " ) 2 ~ \  l,. ] as 0 ",, 0,, 

The condition n < 1,, - l then requires 

l,, - -  l > / ~ , n ( l o g  l~,) t/3 

The time to reach l= l , , - l~ , / 3 ( l og l , )  I/3 is then found to behave as 
exp [0(l~,/3(log le)2/3)']. 

The phenomenon of contact angle hysteresis takes place normally in 
the partial wetting regime, away from the wetting transition, whose order, 
first or second, perhaps modified by the disorder, is not important here. 
The results of the present paper are even qualitatively the same as those 
given for a simplified model ~9) where only the dynamics of the contact 
point was studied. This shows that the fluctuations of the other degrees of 
freedom do not play an important role in this hysteresis, away from the 
wetting transition. We expect, on the other hand, that the dimension 
definitely plays a role in the process of contact angle hysteresis. 
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